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The embryonic gonad is undifferentiated in males and females
until a critical stage when the sex chromosomes dictate its
development as a testis or ovary. This binary developmental
process provides a unique opportunity to delineate the mo-
lecular pathways that lead to distinctly different tissues. The
testis comprises three main cell types: Sertoli cells, Leydig
cells, and germ cells. The Sertoli cells and germ cells reside in
seminiferous tubules where spermatogenesis occurs. The Ley-
dig cells populate the interstitial compartment and produce
testosterone. The ovary also comprises three main cell types:
granulosa cells, theca cells, and oocytes. The oocytes are sur-
rounded by granulosa and theca cells in follicles that grow
and differentiate during characteristic reproductive cycles.

In this review, we summarize the molecular pathways that
regulate the distinct differentiation of these cell types in the
developing testis and ovary. In particular, we focus on the
transcription factors that initiate these cascades. Although
most of the early insights into the sex determination pathway
were based on human mutations, targeted mutagenesis in
mouse models has revealed key roles for genes not anticipated
to regulate gonadal development. Defining these molecular
pathways provides the foundation for understanding this crit-
ical developmental event and provides new insight into the
causes of gonadal dysgenesis. (Endocrinology 146: 1035–1042,
2005)

LIKE MOST ORGAN systems, mammalian gonadal de-
velopment involves a complex interplay of multiple

cell types, and it occurs during a relatively narrow time
window. Thus, it is important to understand the temporal
pattern of gene expression as well as the spatial relationships
of the developing tissues. For these reasons, most recent
studies have used the mouse as a model for examining go-
nadal development because it is amenable to genetic ma-
nipulation as well as detailed histologic and biochemical
characterization. During the transition from an undifferen-
tiated gonad to a testis or ovary, the female and male gonad
each display characteristic morphological features and pat-
terns of gene expression (1). The coordinated differentiation
of the embryonic urogenital ridge, from the bipotential state
to sexual dimorphism, provides an opportunity to identify
the key factors and commitment steps that underlie gonadal
differentiation (2).

In humans, the functional significance of some of these
molecules is evident from mutations that impair gonadal
development and reproduction (3–5). For example, deletions
of the Y chromosomal gene, SRY (sex-determining region on
the Y chromosome) cause XY male-to-female sex reversal,

whereas SRY translocations to the X chromosome lead to XX
female-to-male sex reversal (6). The role of Sry as a candidate
testis-determining gene was confirmed by demonstrating
testis development after transgenic expression of Sry in XX
mice (7). Thus, by using animal models, it is possible to
explore genetic pathways in greater detail and elucidate dis-
ease pathogenesis.

Many of the gonadal development factors described to
date are known to act at the transcriptional level. For the most
part, their functions are incompletely understood. Based on
homology to other transcription factors, some affect DNA
bending (8) or modulate chromatin remodeling (9). Others
form interactive complexes that activate transcription (10) or
have a role in specifying progenitor cell types (11). Inhibition
of gene expression is equally likely to be important as a
means to dictate cell fate, but less is known about potential
transcriptional repressors. The functional interaction be-
tween extracellular ligand molecules and nuclear transcrip-
tion factors also merits emphasis. For example, extracellular
signals can induce transcription factor release and translo-
cation to the nucleus [i.e. �-catenin/lymphoid-enhancing fac-
tor, Smad (a name combining small and mothers against
decapentaplegic), Janus kinase/signal transducer and acti-
vator of transcription, nuclear factor-�B, nuclear factor of
activated T cells] (12). Increasing lines of evidence suggest
that cross talk among intracellular signaling pathways me-
diate downstream transcriptional responses. Thus, it is im-
portant to identify the extracellular ligands, membrane re-
ceptors, and signal transduction pathways associated with
gonadal development, as well as the transcription factors.

To date, numerous candidate genes have been identified
based on their pattern of expression in the embryonic gonad.
Gonadal phenotypes are increasingly recognized in knock-
out models originally designed to explore gene function in
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other tissues. In many cases, embryonic lethality precludes
analysis of adult reproductive function. Hence, for gene mu-
tations that have pleiotropic effects, the gonadal phenotype
must be studied primarily during embryogenesis, or by cell
type-specific removal of a genetic locus. Further identifica-
tion of novel candidate genes will rely on a combination of
molecular and genetic tools, including forward and reverse
genetics approaches.

A model for gonadal development postulates a series of
sequential commitment steps as specific cell types achieve
their final differentiated state. A goal in the field is to identify
the genetic cascade that programs these events. Some of these
steps are cell autonomous, meaning that a cell will pursue a
particular fate, relatively independent of its environment.
More often, key developmental steps occur via cell-to-cell
communication, reflecting direct cellular contacts or re-
sponses to paracrine signals. Markers of differentiation in-
clude morphological changes, as well as alterations in gene
or protein expression. A future challenge is to identify spe-
cific targets of key genes in the developmental cascade and
to characterize the biochemical events associated with
differentiation.

Organogenesis in the Urogenital Ridge

After gastrulation, organogenesis in the mouse embryo
starts approximately 8 d post coitum (dpc). The gonad, ad-
renal gland, kidney, and reproductive tract can be traced to
a derivative of the intermediate mesoderm—the urogenital
ridge—that forms at embryonic d 9.5. At 10.5 dpc, the genital
ridge thickens bilaterally on either side of the dorsal aorta
and constitutes an outgrowth of epithelial cells that prolif-
erate at the center of the coelomic cavity and extend along the
anterior-posterior axis from the forelimb bud to the hindlimb
bud. The urogenital ridge is tethered to the peritoneal cavity
by mesentery and comprises two juxtaposed tissues: the
gonad rudiment is located medially and the mesonephros,
which contains dual Wolffian and Müllerian ducts, is more
dorsal (Fig. 1, A and B). The metanephric kidney is an out-
growth of the caudal mesonephros and is visible by 12.5 dpc
(Fig. 1B). The adreno-gonad primordium arises between the
gonad and mesonephros on the dorsal side and buds ante-
riorly at 12.5 dpc to form the adrenal gland. In both sexes, the
adrenal gland and kidney ascend toward the abdominal

region. In contrast, the final position of the gonad depends
on its differentiation into an ovary or testis, and on the
interdependent maturation of the sex-specific Müllerian or
Wolffian ducts. In the male, owing the action of testosterone,
the proximal Wolffian duct is virilized to form the epidid-
ymis, vas deferens, and seminal vesicle. Regression of the
distal Müllerian duct is mediated by anti-Müllerian hormone
(AMH, or Müllerian inhibitory substance, MIS) (13). Another
peptide hormone, insulin-like 3 (Insl-3) mediates testicular
descent (13, 14). Persistent Müllerian duct syndrome (PMDS)
in males is caused by loss of MIS, MIS type I, or type II
receptor function (15–17). The absence of testosterone and
MIS in females allows regression of the Wolffian duct
and development of the Müllerian duct into oviduct,
uterus, and upper vagina.

Genetic Program of the Bipotential Gonad

The gonad primordium is morphologically indistinguish-
able from 10.0 through 11.5 dpc in males and females. The
testis cords become visible by 12.0 dpc and reflect the co-
alescence of Sertoli and germ cells that are surrounded by a
layer of thin peritubular myoid cells. In males, the gonad
begins to enlarge visibly at about 13.5 dpc, as a consequence
of proliferation of germ cells and precursor somatic cells. The
ovary, on the other hand, is seemingly more quiescent during
this time, but female-specific markers provide evidence that
ovarian differentiation is underway (18, 19).

Before expression of the male determining gene, Sry at 10.5
dpc, a number of factors act in concert to specify the uro-
genital ridge in both sexes (Fig. 2). Moreover, because the
urogenital ridge is the primordium for the gonad, adrenal,
kidney, and reproductive tract, multiple organs are often
affected by mutations of these genes.

Wt1 (Wilms’ tumor-1) encodes a zinc finger transcription
factor originally identified as a tumor suppressor gene. Loss-
of-function mutations cause three distinct pediatric syn-
dromes that display urogenital defects affecting male devel-
opment: WAGR (Wilms’ tumor, aniridia, genitourinary
abnormality, mental retardation), Denys-Drash syndrome,
and Frasier syndrome. The Wt1 homozygous knockout an-
imal does not form kidney, adrenal, or gonad (20, 21). In the
gonad, the expression of Wt1 at embryonic d 9.5 suggests a
role in specifying the coelomic epithelial cells in the devel-

FIG. 1. At 11.5 dpc (A), the bipotential urogenital
ridge (large arrow) flanks the dorsal aorta (small
arrow) along the anterior-posterior axis in be-
tween the forelimb bud (FL) and hindlimb bud
(HL). The gonad is closer to the midline, and the
mesonephros develops dorso-lateral to the gonad.
At 11.5 dpc, there are approximately 18 tail
somites (ts) from the tip of the tail to the posterior
end of the hindlimb bud. B, At 12.5 dpc, the male
gonad shows distinct morphologic features in-
cluding a prominent coelomic blood vessel (ar-
row). G, Gonad; M, mesonephros; K, kidney. C, By
13.5 dpc, the male gonad (left) is approximately
twice the size of the female (right) due to in-
creased cellular proliferation. D, Sexual dimor-
phism between the male (left) and female (right)
gonad is further evident by 14.5 dpc (scale bars,
500 �m).
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oping urogenital ridge and ensuring their survival (22). Two
major isoforms have relevance to the developing urogenital
organs: one alternatively spliced variant contains amino ac-
ids KTS (lysine-threonine-serine) (�KTS isoform), and the
other lacks KTS (�KTS isoform). The additional amino acids
lend flexibility to the protein between the third and fourth
zinc finger and thereby diminish its DNA binding property.
Both isoforms appear to have nonredundant functions in
kidney and gonad development but not in the adrenal (23).
In animals with genetically engineered ablation of the �KTS
isoform, apoptosis was observed in streak gonads. Sry ex-
pression is reduced in the gonads of animals lacking the
�KTS splice variant. Loss of either splice variant impairs
testis descent.

Wt1 functions upstream of two orphan nuclear receptors
Sf1 (steroidogenic factor 1) and Dax1 (dosage-sensitive sex
reversal, adrenal hypoplasia congenita, X chromosome) (11).
Wt1 and Sf1 synergize to enhance transcription of Amh,
whereas in vitro experiments demonstrate this interaction is
repressed by Dax1 (10). Sf1 also regulates the expression of
multiple genes involved in male differentiation, steroido-
genesis, and reproduction through Sf1-responsive DNA el-
ements in target gene promoters [Ref. 24; and see review in
this issue by Hammer et al. (25)]. Sf1 stimulates Dax1 tran-
scription, and the two receptors are coexpressed in the ad-
renal, gonad, pituitary gonadotropes, and ventromedial hy-
pothalamus (26). Dax1 interacts directly with Sf1 and
functions as a transcriptional repressor of Sf1-regulated
genes (27). In Sf1 null mutants, neither XX nor XY animals
form the adrenal or gonad. In the absence of Sf1, cells in both
tissue rudiments undergo apoptosis, indicating that Sf1 is
necessary for survival of early progenitors of the adrenal and
gonad (28). At 11.5 dpc, Sf1 colocalizes with proliferating
cells, suggesting that it directly or indirectly stimulates cell
proliferation (29). Dax1-null males possess gonadal defects in
testis cord morphogenesis, peritubular myoid cell prolifer-
ation, and spermatogenesis (30, 31). Hence, Sf1 and Dax1

are independently important for normal male gonadal
differentiation.

Genes that primarily affect male gonadal differentiation
or, have a male-specific expression pattern before distinct
morphological changes, continue to expand the network of
molecular pathways involved in testis development. Auto-
somal recessive male-to-female sex reversal (XY male bear-
ing female gonads and feminized external genitalia) has been
described in several mouse knockout models. M33 (poly-
comb homolog) is involved in chromatin remodeling, yet its
precise molecular role in gonadal differentiation is unknown
(9). The LIM-domain containing transcription factor Lhx9
(Lim homeobox) is required for full Sf1 expression (11, 32).
In contrast to the Sf1 null animal, lack of testis development
was not attributed to apoptosis in either Lhx9 or M33 mutant
mice. Pod1 (podocyte) is a basic helix-loop-helix transcription
factor with a primary role in glomerular visceral epithelial
cell (podocyte) differentiation and branching morphogenesis
in the kidney and lung (33). In Pod1 knockout mice, the
gonads of both sexes are hypoplastic (34). Expression of Pod1
in the male gonad was found mainly in the interstitium:
peritubular myoid cells, pericytes associated with endothe-
lium, and fetal Leydig cells. Defective coelomic vessel for-
mation and attenuation of migrating endothelial cells from
the mesonephros compromised vascularization in Pod1
knockout male gonads. Although Sertoli development was
not affected, there appeared to be expansion of the Sf1-pos-
itive Leydig cell population. Dmrt1 (doublesex- and mab-
related transcription factor) is homologous to genes in Dro-
sophila and Caenorhabditis elegans, and null mutation causes
dysmorphic testes in mice (35). Maestro (Mro), protease nexin-1
(Pn-1), and vanin-1 (Vn-1) were identified based on a sexually
dimorphic expression pattern specific to the XY bipotential
gonad (36–38). Later in development, maestro remains ex-
pressed in Sertoli and XY germ cells, whereas protease nexin-1
and vanin-1 are Sertoli restricted. Whether any of these newly
described factors specify precursor populations, analogous

FIG. 2. Summary of genetic pathways involved
in gonadal development. The bipotential gonad
expresses genes such as Wt1, Sf1, Emx2, M33,
Lhx9, Pod1, and Dmrt1. Subsequently, expres-
sion of the insulin receptor family Ir, Irr, and
Igf1r; GATA4/Fog2; Wt1; and Sf1 are thought to
promote the expression of Sry in the male. Sox9
and Sox8 are downstream of Sry. Sf1 regulates
Amh activation in Sertoli cells and steroidogen-
esis in Leydig cells. In the male, Dax1 may re-
press Sf1 in a dose-dependent manner, modulat-
ing the transactivation of Amh and genes
necessary for steroid hormone biosynthesis. Dax1
also supports the normal formation of testis
cords. Additional factors such as Arx, Dhh,
Pdgfr-�, Fgf9, and FgfR2 are involved in Leydig
and Sertoli cell differentiation. A description of
the cellular events downstream of Sry and thus
specific to male development is outlined in the
center box. PGC, Primordial germ cell; PTM, peri-
tubular myoid cell. Female differentiation re-
quires the activity of Wnt4a and repression of
Sox9. Other key factors include Fst, Bmp2, and
Dax1.
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to the role of Sry-expressing Sertoli precursor cells, remains
to be tested. The extent to which function can be attributed
to a gene product relies on the phenotype of null mutation
models in which are affected on all tissues where the gene of
interest is expressed. Only recently have tissue-specific mu-
tagenesis studies, for example with Sf1 and Sox9 [Sry related,
HMG (high-mobility group) box], begun to elucidate spatial
requirements attributed to developmentally regulated genes
(39–41).

Supporting Cells: The Embryonic Testis Cord

The Sertoli cell is positioned at the base of the testis cord
creating the perimeter of the tubule. Closely apposed is the
elongated cell layer of peritubular myoid cells circumferen-
tially surrounding the nascent cord. Testis cord morphogen-
esis is apparent in the male as early as embryonic d 12.0. The
testis cords pattern the developing gonad and are the em-
bryologic foundation for the adult seminiferous tubule. Ser-
toli precursor cells were identified at the coelomic surface
(ventro-medial aspect) using dye tracking experiments that
labeled dividing cells (42). Sertoli cells and granulosa cells
may originate from the same precursor (43). In XX-XY chi-
meric studies, Sertoli cells were the only cell type that re-
quired Sry expression in a cell autonomous manner, whereas
XX cells were preferentially excluded from the Sertoli pop-
ulation (44).

Sertoli cells, the cell lineage in which Sry is solely ex-
pressed in the male gonad, are thought to direct the differ-
entiation of other cell types (45). For example, fetal Leydig
cell differentiation depends on paracrine signaling through
the extracellular protein Desert Hedgehog, which is secreted
by Sertoli cells (46). Endothelial cells originating from the
mesonephros are induced by a chemoattractant released by
the male gonad (47). Two factors that can induce mesoneph-
ric cell migration are fibroblast growth factor (FGF) 9 and
MIS, both of which are produced by Sertoli cells (48, 49).
Sertoli cells also secrete a postulated factor(s) that induces
mitotic arrest of germ cells (50). Unlike the female gonad,
germ cells in the developing testis undergo mitotic arrest,
being held as diploid progenitors until later in spermato-
genesis. There is recent evidence that XY germ cells synthe-
size paracrine factors, including prostaglandin D2, that in-
duce Sertoli differentiation (51).

Sry expression occurs in a narrow temporal window from
10.5–12.0 dpc. The spatial pattern of Sry expression has been
clarified by in situ hybridization analysis timed to tail somite
stages. The central region of the gonad exhibits Sry expres-
sion first, followed by a rostral to caudal progression along
the entire length of the gonad (52). Although Sry belongs to
the HMG box containing family of nuclear transcription fac-
tors, evidence for downstream target genes remains elusive.
A closely related gene, Sox9, is the other definitive male-
determining gene identified thus far. Immunohistochemical
labeling of genetically marked Sry-positive cells demonstrate
that Sry and Sox9 expression overlap in cells of the Sertoli
lineage (53). As the Sry signal diminishes at 12.5 dpc, Sox9
expression increases in the male and reaches a peak at 14.5
dpc. Sox9, which is weakly expressed in the undifferentiated
gonad, is down-regulated in the female. Transgenic expres-

sion of Sox9 on an XX genetic background is sufficient to
cause female-to-male sex reversal (54). Heterozygous human
SOX9 mutations cause campomelic dysplasia, a severe skel-
etal disorder with defective cartilage development (55, 56).
Many of these male patients also have gonadal dysgenesis.
Heterozygous mice haploinsufficient for Sox9 die perinatally
due to skeletal malformations (57). An ingenious strategy
was designed to transmit the knockout allele through the
germline of otherwise wild-type male and female parents by
the use of spermatocyte- and oocyte-specific promoters, re-
spectively, enabling the zygote to obtain both knockout al-
leles (41). These experiments confirm that Sox9 is necessary
for male gonadal development. Notably, Sox9 null embryos
have elevated Sry expression, suggesting a negative feedback
regulatory loop that down-regulates Sry in the mouse. Ex-
perimental evidence using mouse strains with a variety of
Sry alleles supports the assertion that the precise timing,
duration, threshold transcript levels, and protein isoform
half-life, influence downstream events dependent on Sry ex-
pression (58, 59). Sox8, another member of the Sox HMG box
containing transcription factor gene family, is also active in
male development (60). It is possible that Sry, Sox9, and Sox8
have partially redundant functions.

GATA4 and Fog2 (friend of GATA) are important for car-
diac morphogenesis but also influence gonadal develop-
ment. A GATA4 knock-in mutation, which prevents nuclear
association of GATA4 and Fog2, eliminates expression of the
male differentiation markers Sox9 and Amh. Fog2 null mice
have decreased Sry expression, loss of Sox9, Amh, and Desert
hedgehog (Dhh), but persistence of the female marker Wnt4
(61). The GATA4 knock-in and Fog2 null mice retain Sf1 and
Wt1 expression, suggesting a hierarchical network. Similarly,
Ir, Irr, Igf1r (insulin receptor, insulin-related receptor, Igf1
receptor) triple mutants have low Sry and Sox9 expression
and exhibit male-to-female sex reversal, thus implicating the
insulin signaling pathway in male differentiation (62).

Anti-Müllerian hormone (AMH) or MIS is a key peptide
hormone produced by Sertoli cells. It mediates the regression
of the Müllerian duct, which would otherwise form female
reproductive tract structures. In genetic males, PMDS is due
to loss of MIS or cognate receptors present in mesenchymal
cells of the Müllerian duct. PMDS is an example of male
pseudohermaphroditism whereby males with testicular tis-
sue appear feminized externally due to failure of testis de-
scent caused by the presence of uterus and oviduct. Mülle-
rian regression involves activation of a �-catenin-dependent
pathway in a rostral-to-caudal manner (63). A number of
factors are known to regulate Amh transactivation. These
include Sf1, WT1, GATA4, Sox9, and Sox8 (10, 64–66). MIS
may have other functions that include mesonephric cell mi-
gration and vascularization in the male gonad, and germ cell
loss in the ovary (49, 67).

Proliferation of pre-Sertoli cells is an important event in
male development (29). By 13.5 dpc, the male gonad is twice
the size of the female (see Fig. 1, C and D). One factor linked
to proliferation is Fgf9. Fgf9 null mice show varying degrees
of male-to-female sex reversal (48). A number of Fgf recep-
tors have been identified and FgfR2 is thought to direct
Sertoli cell differentiation perhaps as a result of nuclear trans-
location, which occurs simultaneously with translocation of
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Sry and Sox9 (68). A secreted protein, Fgf9, is a candidate
male gonad-specific chemoattractant signal that induces mi-
gration of cells from the mesonephros into the gonad. Im-
migrant cells have been identified mainly as endothelial and
peritubular myoid cells (47). Migration of these cells is nec-
essary for testis cord morphogenesis (69) and induction of
Sox9 expression (70). This migration of mesonephric cells
does not occur in females presumably because a chemoat-
tractant is absent. Furthermore, once XX germ cells enter
meiosis at 13.5 dpc, migration from the mesonephros is in-
hibited (71).

Hormone Biosynthesis: The Interstitial Space

Once sex determination has occurred, the ensuing pheno-
typic differentiation depends heavily on the production of
steroid hormones. In the male, testosterone stabilizes the
Wolffian duct and is converted by 5�-reductase to the potent
derivative, dihydrotestosterone, which induces virilization
of the male external genitalia. In the female, aromatase me-
diates estradiol synthesis. In some species, aromatase ex-
pression is critical for ovarian development; its role in ovary
development in mammals is less clear, although aromatase
deficiency is associated with transdifferentiation of granu-
losa cells into Sertoli-like cells (72).

Sf1 is restricted to Leydig cells after 13.5 dpc and mediates
expression of several genes encoding enzymes required for
testosterone biosynthesis including StAR (steroidogenic
acute regulatory protein), Cyp11a1, Cyp17 (cytochrome P450
hydroxylases), and 3�HSD (hydroxysteroid dehydroge-
nase). The factors required for Leydig cell determination and
lineage development are incompletely understood. More-
over, their origin, whether from immigrant mesonephric
cells or progenitors within the gonad, remains equivocal.
Leydig cell fate appears to rely on paracrine signals. Dhh, a
Sertoli-secreted factor, induces expression of Cyp11a1 (side-
chain cleavage) in the Leydig cell (46). The Dhh signal is
received by the receptor patched (Ptc1), which is expressed
on Leydig cells. Dhh is thought to play a crucial role in Leydig
cell differentiation and is an example of a paracrine signaling
pathway identified between two developing cell types. Ge-
netic analysis has placed Pdgfr-� (platelet-derived growth
factor receptor-�) upstream of Dhh (73). Like Fgf9, Pdgfs
induce mesonephric migration, and Pdgfr-� is necessary in
the gonad for full Cyp11a1 expression. The X-linked gene Arx
(Aristaless-related homeobox) also influences Leydig cell de-
velopment. However, it is expressed mainly in peritubular
myoid cells, endothelial cells, and in the epithelium of the
tunica albuginea (74).

Female Embryonic Gonadal Development

Relatively few genes have been shown to exhibit a female-
specific pattern of gene expression early in gonadal devel-
opment. To date, no gene has been shown to be a female-
determining gene, as defined by conferring complete
female-to-male sex reversal when mutated on an XX back-
ground, or by conferring male-to-female sex reversal after
overexpression on an XY background. The Dax1 gene was
initially suggested as a pro-ovarian, or anti-testis, candidate
gene because its duplication on an XY background is asso-

ciated with impaired testis development (75, 76). However,
Dax1 loss of function on the XX background does not prevent
ovary development (31). Subsequent studies have shown an
unexpected role for Dax1 in testis development (77), indi-
cating that its actions are highly dependent on the timing and
level of expression.

Although male somatic tissue can survive in the absence
of germ cells, the female gonad depends on migratory germ
cells to populate the undifferentiated primordium (78). In the
female gonad, germ cells begin entering meiosis at 13.5 dpc
and initiate a dynamic paracrine relationship with support-
ing cells destined to become cumulus and granulosa cells
(79).

A growing list of genes exhibit an ovary-specific expres-
sion pattern. For example, follistatin (Fst) is highly expressed
in the developing ovary relative to the testis (19). Follistatin
binds members of the activin/TGF�/bone morphogenetic
protein (BMP) family. Thus, it may regulate the activity of
one or more of these factors. Stra8 (stimulated by retinoic
acid) is also selectively expressed in the developing ovary
and is thought to play a role in regulation of meiosis (80).
Targeted mutagenesis and transgenic overexpression exper-
iments will clarify the functions of these factors.

There has been postulated a “Z factor” that could act to
suppress pro-testis events carried out by autosomal or X-
linked genes in both XY and XX backgrounds (81). The Z
factor would act downstream of Sry in genetic males. There-
fore, the Z factor would be repressed by Sry in the male, and
independent of Sry on an XX genetic background. Loss of a
Z factor would be sex-reversing on XX (female-to-male), but
gain-of-function on XY may or may not exhibit sex reversal
(male-to-female) depending on whether the Z factor can
override the downstream events of Sry. One candidate for the
Z factor is Wnt4 (Wingless-related integration site). Female
Wnt4 null mice develop virilizing gonads and Wolffian de-
rivatives (82). This gonadal phenotype reflects the action of
Wnt4 to induce the migration of steroidogenic precursors of
the adreno-gonad primordium into the anterior region of the
gonad (83). Hence, misdirected adrenal steroidogenic cells
become localized in the XX Wnt4 knockout gonad. Secondly,
Wnt4 is down-regulated in males, whereas its expression
remains strong in females where it prevents coelomic vas-
cularization (a male feature, see Fig. 1B) through a molecular
pathway that involves Fst and Bmp2 (19). By inhibiting vas-
cularization, Wnt4 may prevent the proliferative growth ex-
pansion characteristic of male development. Thus, the ho-
mozygous knockout female gonad appears somewhat more
male-like in shape and size. Externally, however, homozy-
gous knockouts exhibit female genitalia. In humans, a
loss-of-function mutation in WNT4 caused Mayer-Rokitan-
sky-Kuster-Hauser syndrome, which is characterized by de-
fective development of Müllerian derivatives (84). Duplica-
tion of a chromosomal region containing WNT4 was
associated with a case of human XY sex reversal (85). How-
ever, overexpression of Wnt4 on an XY background does not
lead to XY sex reversal in the mouse (83, 86). Thus, the major
roles of Wnt4 in the female appear to include suppression of
androgen-producing interstitial cells, inhibition of testis-like
vascularization, and support of Müllerian derivatives. Wnt4
is also essential for kidney (87), mammary gland (88), and
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pituitary development (89), as well as normal functioning of
the adrenal cortex (90).

A dominant insertional mutation led to identification of a
female-to-male sex reversal phenotype in the Odsex (Ocular
degeneration with sex reversal) mouse (91). The Odsex mouse
was initially thought to lack a repressor for Sox9, allowing
unabated Sox9 expression ectopically in genetic females.
Therefore, one of the functions of a Z factor could be to
suppress Sox9 action in the female gonad. However, it is also
possible that regulatory elements contained in the inserted
transgene promote activation of Sox9.

Nucleo-cytoplasmic shuttling of transcription factors may
also provide an important regulatory step in sex determi-
nation. Organ culture experiments using the nuclear export
blocker, leptomycin B, resulted in male-characteristic Sox9
and MIS expression in XX gonad organ cultures (92). Thus,
growth factors may be able to modulate transcriptional con-
trol by altering the location as well as the activity of various
transcription factors.

Central Questions and Future Directions

The molecular pathways directing cellular differentiation
can be traced back to cells of pluripotential origin. Thus,
development must occur through a series of commitment
steps driven by cell-to-cell contacts and paracrine interac-
tions. In some cases, committed cells initiate a cell-autono-
mous program, as perhaps illustrated by Sry and Sox9 actions
in Sertoli cells. In other cases, differentiation is driven by
secreted factors as illustrated by Dhh, Wnt4, and Fgf9. These
cell autonomous and paracrine pathways are not mutually
exclusive, and it is likely that most commitment steps inte-
grate a series of internal and external signals. The sex de-
termination pathway provides a unique paradigm for con-
sidering these events because the commitment steps lead to
distinct cell types within a narrow time frame.

Despite impressive progress in this field, a number of
challenging questions remain. What factors initiate Sry ex-
pression and what are its cellular targets? Are Sry and Sox9
expression linked directly or do they reflect parallel, partially
redundant pathways? Given that Sox9 is sufficient to induce
Sertoli cell development, what are its targets and how does
it induce a network of genes they convey morphological
changes characteristic of the testis? What are the genetic and
molecular events that dictate ovary development? Although
it is known that germ cells interact actively with somatic cells,
what are the molecular and cellular events that control germ
cell replication and entry into meiosis? How do meiotic germ
cells foster ovary development? Implicit in these questions is
the critical feature of timing during gonadal development.
Once the Sertoli program is initiated, the developing testis
induces mitotic arrest of germ cells. On the other hand, if
Sertoli development is delayed, as occurs with various Sry
alleles and mouse genetic backgrounds, germ cells begin to
enter meiosis, and this step may further impair testis devel-
opment, leading to mixed testis/ovary tissue or gonadal
dysgenesis. Thus, future studies need to carefully assess
pathways that control the timing and level of expression of
regulatory factors.

Further understanding of these molecular and cellular

functions in the gonad will provide examples of paradigms
used to control cellular differentiation in other tissues. This
knowledge will also be useful for the characterization of
intersex cases and perhaps additional causes of idiopathic
infertility. Parallel investigation of human mutations and
animal models can accelerate progress in this field by iden-
tifying candidate genes and clarifying their roles in
development.
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